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1 Probability

1.1 Basic Probability

The probability of event ”A” happening is given by

P(A) =
# ways A can happen

# of things that can happen
.

As we will see in the examples below, this way of determining probability is fine for events
that can only happen a limited number of ways. To calculate more complex probabilities,
we need to develop more advanced methods.

1.1.1 Example —— Coin Flip

If a coin is flipped twice, what is the probability of each event.

1. A = at least one heads

2. B = no heads

First we can calculate the denominator, ie: the total number of things that could happen.

S = {hh, ht, th, tt}.

Now that he know all of the possible outcomes, we can find the probability of event A.
From the total possibilities, it is clear to see that a heads is possible from 3 of the
outcomes, and has its own set.

A = {hh, ht, th}.

So, the probability of A is

P(A) =
3

4
= 75%.

To find the probability of B we ask ourselves the same question, ”of the total possibilities
how many times does event B occur.”

B = {tt}.

Thus, the probability of B is

P(B) =
1

4
= 25%.

1.1.2 Example —— Two Dice

Two 6-sided dice are rolled, calculate the probability that at least one die is a 5.

First we ask ourselves, what is the total number of things that can happen when we roll
two dice. If the first die is a 1, the second die can take the values 1-6. If the first die is a
2, the second die also takes the values 1-6, and so on.

S = {11, 12, 13, . . . , 64, 65, 66}.
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From this we can see that there are a total of 36 possible things that could happen.
Now we ask ourselves, how many ways can our event happen. That is, how many times
is at least one of the die a 5.

A = {15, 25, 35, 45, 51, 52, . . . , 56, 65}.

From basic counting, we can see the probability is

P(A) =
11

36
≈ 30.6%.

An alternative way of solving this problem is to use mathematical operators on individual
probabilities to create a sort of logical expression.

P(A) = P(D1 = 5) + P(D1 ̸= 5) · P(D2 = 5).

From above, the probability of our event A is the probability that the first die is a 5 and
the probability the first die is not a 5 times the probability the second die is a 5.

P(A) =
1

6
+

5

6
· 1
6
=

11

36
≈ 30.6%.

1.2 Combinatorics

In combinatorics there are two ways we can classify the way we count. With replacement,
and without replacement.
In either case, if order matters, and we want to count the number of n choices that we
are sampling r times the formula we use is as follows.

1. With replacement: # = nr

2. Without replacement: # =
n!

(n− r)!

However, if order does not matter, then the formula becomes.

1. Without replacement: # =
n!

(n− r)! r!

What this means in plain terms is that for any sequence in which order matters without
replacement, there are r! equivalent sets in which order does not matter. Thus, we can
divide out those r! equivalent sets.
The formula above, for when order does not matter without replacement, is called a
combination. It is often written as

n!

(n− r!) r!
=

(
n

r

)
= nCr.

Read simply as ”n choose r”. This is also known as a binomial coefficient.
The flip side of this is known as a permutation, which is when order matters without
replacement.

n!

(n− r)!
= nPk.
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1.2.1 Example —— 10 Coin Flips

Count the number of sequences of 10 coin clips.
Note that sequences implies that order matters.

Each coin is independent from each other, therefore for each coin there is two outcomes.
Heads or tails. So the number of possible outcomes is

2× 2× 2× 2× 2× 2× 2× 2× 2× 2.

Or, more simply,
210.

1.2.2 Example —— 5 Card Hands

From a deck of 52 cards, how many 5 card runs can be dealt from the top of the deck.
Assume order matters.

Each card is independent from each other, so when we draw a card from the top of the
deck it can be 1 of 52 cards. However, when we draw the next card it can be 1 of 52
cards, since we have already removed one.

52× 51× 50× 49× 48.

Unlike the previous example, we cannot simply write this as some base to the power of
the number of times we want to draw a card or toss a coin. Rather, we need to use a
factorial. Thus we can write the above sequence as

52!

47!
= 311, 875, 200.

1.3 Sample Spaces and Events

A sample space Ω is the set of all possible outcomes of a random experiment.
A specific element, ω ∈ Ω is one outcome, or realization, of the experiment.
From a larger set, Ω, we can construct subsets.

1. Union (∪): Elements in set A or B

2. Intersection(∩): Elements in sets A and B.

3. Compliment(Ac): Elements not in A.

This leads us to defining a few fundamental properties of probabilities.

1. P(Ω) = 1

2. If A ⊂ Ω, then P(A) ≥ 0

3. If A and B are disjoint, (A ∩B = ∅), then P(A ∪B) = P(A) + P(B)

From these fundamental properties, we can derive other useful properties such as.

• P(Ac) = 1− P(A)

• P(∅) = 0

• P(A ∪B) = P(A) + P(B)− P(A ∩B)
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1.3.1 Example —— 3 Coin Flips

If a coin is flipped three times in sequence construct sets of the following:

1. The first flip is a heads.

2. The second flip is a tails.

3. A union of the first two sets.

4. An intersection of the first two sets.

First we can define our set Ω which is all possible outcomes.

Ω = {hhh, hht, hth, htt, thh, tht, tth, ttt}.

If we wanted to define a subset, A, where the first flip is a heads

A = {hhh, hht, hth, htt}.

If we wanted to define a different subset, B, where the second flip is a tail

B = {hth, htt, tth, ttt}.

If we wanted, we could define a third subset which is everything in both A or B.

A ∪B = {hhh, hht, hth, htt, tth, ttt}.

Additionally, we could define a subset of everything in both A and B.

A ∩B = {hth, htt}.

1.4 Unintuitive Probability

So far the above examples are fairly intuitive and a person could likely reason their way
to the solution without knowing anything about probability.
In this section we will look at some more involved problems that require, or at least are
much easier, using the methods developed above.

1.4.1 Example —— Birthday Problem

If there are n people in a room, how large does n need to be for at least 50% of at least
two people sharing a birthday.

From the properties of probabilities, if we want to find out the probability at least two
people share a birthday, that is the same as finding 1 minus the probability no one shares
a birthday.

P(≥ 2 birthdays) = 1− P(no birthdays).

In this circumstance, and many other circumstances in which we are asked questions
posed with ”at least”, it is much easier to calculate the compliment of ”at least”, being
”none”.
To then calculate the probability no one shares a birthday we can say that the first person
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can have any birthday they like out of 365 possible days. The next person can then have
any birthday other than the previous persons birthday, the next person can have any
birthday other than the first 2 people, and so on.

365

365

364

365

363

365
· · · · 365− n+ 1

365
=

# unique birthdays

# choices
.

From the above, we can see the following relations.

# unique birthdays =
365!

(365− n)!
.

# choices = 365n.

Substituting these in we get.

P(no birthdays) =
365!

(365− n)! 365n
.

And thus, the probability at least two people share a birthday is.

P(≥ 2 birthdays) = 1− 365!

(365− n)! 365n
.

2 Conditional Probability and Independence

The idea behind conditional probability is that as we conduct an experiment, we gain
new information that causes the probability of events within the experiment to change.
Take for example drawing cards from a shuffled deck. If our desirable outcome is to draw
an ace, initially we have the probability:

P(Ace) =
4

52
=

1

13
.

However, if we are told that the card on top of the deck were a face card, our probability
would plummet to 0 as an ace, by definition, cannot be a face card.
If we were told that the card on top was a spade, then the probability does not change
at all.
However, if we were told that the card on top was not a face card, then all of a sudden
our probability becomes

P(Ace) =
4

52− (4× 3)
=

1

10
.

2.1 Definition

For any two events A and B, with P(B) > 0, the conditional probability of A given
B, denoted by P(A|B) is defined by:

P(A|B) =
P(A ∩B)

P(B)
.

Where ”|” is read as ”given” or ”conditional on”.
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2.1.1 Misconceptions

1. P(A|B) ̸= P(B|A)

P(wet grass|rain) is high
P(rain|wet grass) is lower

2. It is required that P(B) > 0. Otherwise, the conditional probability is undefined
when P(B) = 0.

3. In P(A|B), B is what we know, A is what we want to find.

2.2 Computing Conditional Probabilities

One thing to note about conditional probabilities is their restriction on sample spaces. If
a sample space initially includes A, B, and A∩B once we find the probability of A given
B we restrict the sample space to being only what is contained in B.

2.2.1 Example —— Quality Control

A manufacturing plant has two assembly lines, A and A′. Line A assembled 8 components
where 2 were defective, and 6 were non-defective. Line A′ assembled 10 components where
only 1 was defective, and 9 were non-defective.
If a randomly selected component is found to be defective, what is the probability it came
from line A?

The first thing we should do is try to identify what kind of question this is. It should be
pretty obvious that this is a conditional probability question given which section we are
in, but if we did not know that, how would we identify this question?
Key words such as ”If...” and ”...found to be...” indicate to us that there are restrictions
applied to our sample space.
This question is asking us to look at the defective components and determine which line
each came from.
There are a total of 3 defective components, our sample space, of these 3 defective com-
ponents 2 came from line A.
Thus, our probability is:

P(A|B) =
2

3
.

Where A is ”from line A” and B is ”is defective”, read is ”from line A is defective”.
Alternatively, using the definition of conditional probabilities, we find that:

P(A|B) =
P(A ∩B)

P(B)
=

2/18

3/18
=

2

3
.

2.3 Multiplication Rule

For any two events A and B with P(B) > 0,

P(A ∩B) = P(A|B) · P(B).

The multiplication rule is useful when...
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1. P(B) is easy to compute directly.

2. P(A|B) is naturally described by the problem.

3. The intersection P(A ∩B) is what we need.

2.3.1 Example —— Sequential Selection

An urn contains 5 red and 3 blue balls. Two balls are drawn sequentially without re-
placement. What is the probability that both are red?

In this question we are told that the balls are drawn without replacement. This is a good
clue that we are dealing with conditional probability as our odds change based on past
events.
We want to know the odds of drawing a red ball, given the ball we’ve already drawn is
red. In other words, the odds of red and red.

Let R1 = 1st ball red

R2 = 2nd ball red

Then P(R1 ∩R2) = P(R2|R1) · P(R1)

=
5

8
· 4
7
=

5

14

Note that in this example, P(R2|R1) = 4/7 because after removing one red ball, 4 red
balls out of 7 total balls remain.

2.4 Law of Total Probability

The main idea with the law of total probability is a divide and conquer strategy.

1. Partition the sample space into manageable cases.

2. Compute P(A|Bi) for each case.

3. Combine using weighted average with weights P(Bi).

Events B1, B2, . . . , Bn form a partition of the sample space S if:

1. Bi ∩Bj = ∅ for all i ̸= j (mutually exclusive)

2. B1 ∪B2 ∪ · · · ∪Bn = S (exhaustive)

3. P(Bi) > 0 for all i

Then, for any event A:

P(A) =
n∑

i=1

P(A|Bi) · P(Bi) =
n∑

i=1

P(A ∩Bi).
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2.4.1 Special Case

A special case arises when B and Bc form the partition:

P(A) = P(A|B)P(B) + P(A|Bc)P(Bc).

2.4.2 Example —— Manufacturing with Multiple Suppliers

A company sources components from three suppliers:

Supplier 1: 50% of components, 5% defect rate.

Supplier 2: 30% of components, 3% defect rate.

Supplier 3: 20% of components, 8% defect rate.

What is the probability that a randomly selected component is defective?

As with most questions we can ask ourselves what is the sample space. In this case, we
are very clearly given the sample space. Supplier x is x% of the sample space.
Written more formally we see that the suppliers form a partition.

P(B1) = 0.5 P(B2) = 0.3 P(B3) = 0.2

Where Bi can be read as ”from supplier i”. Then, by the law of total probabilities we
find that for event D, ”is defective” the probability is:

P(D) = P(D|B1)P(B1) + P(D|B2)P(B2) + P(D|B3)P(B3)

= (0.05)(0.50) + (0.03)(0.30) + (0.08)(0.20)

= 5%
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