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1 Review

1.1 Matrices

To find the cross product, we need to set up a determinant. The top row is for the unit
vectors, the next row is for the components of the first vector, and the last row is for the
components of the second vector.
Given a⃗ = (a1, a2, a3) and b⃗ = (b1, b2, b3)

a⃗× b⃗ =

∣∣∣∣∣∣
î ĵ k̂
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
Using a method of cross multiplication we find a⃗× b⃗ through the following.
Note: The order of sign for the unit vectors, +,−,+.

a⃗× b⃗ = î(a2b3 − a3b2)− ĵ(a1b3 − a3b1) + k̂(a1b2 − a2b1)

2 Chapter 16: Vector Fields

2.1 Lecture 1

Definition: A scalar field is another name for a real valued function. Eg:

f(x, y), f(x, y, z).

defined on a region in R2 or R3. The output of a scalar function is a subset of of R.
Consider a system which maps Rn → R. Eg:

Temperature: T (x, y, z) =
1

1 + x2 + y2 + z2
.

Definition: A vector field is a vector valued function F⃗ that maps a region in Rn into
Rm.

Example

Consider the two charges q (source) and Q (test charge influenced by q). Then, the
force on Q at position (x, y, z) due to q which is at rest a distance |r⃗| =

√
x2 + y2 + z2

away from Q is given by the following:

F⃗ (x, y, z) =
1

4πϵ0

qQ

|r⃗|2
r̂.

Given that r̂ = r⃗
|r⃗| we can see multiplying the equation above results in an |r⃗|2 term

in the denominator.
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Here, we can find the mapping from Rn to Rm through the following:

P (x, y, z) =
qQ

4πϵ0

x√
x2 + y2 + z2

3

Q(x, y, z) =
qQ

4πϵ0

y√
x2 + y2 + z2

3

R(x, y, z) =
qQ

4πϵ0

z√
x2 + y2 + z2

3

Definition: A vector field is smooth if its scalar field has continuous partial deriva-
tives.

3 Conservative Vector Fields

Given f(x, y, z) does there exist a scalar field ϕ(x, y, z) such that

f(x, y, z) = ∇ϕ

(
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

)
.

In general, no.
Definition: If f(x, y, z) = ∇ϕ(x, y, z) for all x, y, z in region D, then we call F⃗ a conser-

vative vector field on D and call ϕ the scalar potential function corresponding to F⃗ .
The question is then, how do we know F⃗ is a conservative? We know that F⃗ is conser-
vative if there is ϕ such that F⃗ = ∇ϕ.
There is also the following necessary conditions:

1. In 2D: If F⃗ (x, y) = P (x, y)̂i + Q(x, y)ĵ is conservative in D ⊆ R2 then P and Q
must satisfy:

∂P

∂y
=

∂Q

∂x
.

for all (x, y) ∈ D.

2. In 3D: If f(x, y, z) = P (x, y, z)̂i+Q(x, y, z)ĵ+R(x, y, z)k̂ is conservative in D ⊆ R3.
Then we must have:

∂P

∂y
=

∂Q

∂x
.

∂P

∂z
=

∂R

∂x
.

∂Q

∂z
=

∂R

∂y
.

for all (x, y, z) ∈ D.

Remark: If F⃗ is conservative (ie: F⃗ = ∇ϕ or ∇ϕ = F⃗ ), then

∂ϕ

∂x
= P.

∂ϕ

∂y
= Q.

∂ϕ

∂z
= R.
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3.1 Example

Determine if

F⃗ (x, y, z) = (2x+
y2

2
, xy + z, y + 3z2).

satisfies the necessary conditions for a conservative vector field. If so, find a potential
function ϕ for F⃗ .
Solution: As this is a vector field in 3D, we need to check that all three conditions listed
above are satisfied. Noting that the P, Q, and R of the vector field are as follows:

F⃗ (x, y, z) = (P,Q,R).

∂P

∂y
=

∂Q

∂x
= y.

∂P

∂z
=

∂R

∂x
= 0.

∂Q

∂z
=

∂R

∂y
= 1.

As all of the above conditions are met, we can say that F⃗ is conservative. Therefore,
there exists ϕ(x, y, z) such that ∇ϕ = F⃗ . Now we can find the potential function, ϕ.

∂ϕ

∂x
= P (x, y, z) = 2x+

y2

2
(1)

∂ϕ

∂y
= Q(x, y, z) = xy + z (2)

∂ϕ

∂z
= R(x, y, z) = y + 3z2 (3)

We then find ϕ(x, y, z) by integrating one of the above equations. We generally choose
the one is that is easiest to integrate. In this case, we will integrate (1) with respect to
x.

ϕ(x, y, z) =

∫
∂ϕ

∂x
dx =

∫
P (x, y, z) dx

=

∫
(2x+

y2

2
) dx

= x2 +
1

2
xy2 + A(y, z)

(4)

Note that in this case the constant of integration is a function of y and z with respect to
x.
Now we need to find A(y, z). We will differentiate (4) with respect to y and compare the
result with (2).

xy +
∂A

∂y
= xy + z

∂A

∂y
= z

(5)

Now we integrate (5) with respect to y.

A(y, z) =

∫
∂A

∂y
dy

=

∫
z dy

= yz +B(z)

(6)
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Noting again that the constant of integration is a function of z with respect to y. As
we’ve done before, we need to find B(z) by substituting (6) into (4).

ϕ(x, y, z) = x2 +
1

2
xy2 + yz +B(z) (7)

Differentiating (7) with respect to z and comparing the result with (3)

y +
dB

dz
= y + 3z2

dB

dz
= 3z2

(8)

Integrating yields
B(z) = z3 + C.

Thus, the potential function is:

ϕ(x, y, z) = x2 +
1

2
xy2 + yz + z3 + C .

3.2 Example

For what values of a and b such that

F⃗ (x, y) =

(
axy − 4

3
xy3, b(x2 +

3

2
x2y2)

)
satisfies the conditions for a conservative vector field? Use these values in F⃗ to find a
potential function for F⃗ .
Solution: For a vector field to be conservative in R2 we need the following condition to
be satisfied:

∂P

∂y
=

∂Q

∂x
.

Noting that we have

∂P

∂y
= ax− 4xy2.

∂Q

∂x
= 2bx+ 3bxy2.

Thus we can solve for a and b.

−4xy2 = 3bxy2 ⇒ b = −4

3
.

ax = 2bx ⇒ a = 2b ⇒ a = −8

3
.

If we plug these values for a and b back into F⃗ we can find a potential function for this
vector field.

F⃗ (x, y) =

(
−8

3
xy − 4

3
xy3,−4

3
x2 − 2x2y2

)
.

Now we can find ϕ(x, y)
∂ϕ

∂x
= P (x, y) = −8

3
xy − 4

3
xy3 (1)
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∂ϕ

∂y
= Q(x, y) = −4

3
x2 − 2x2y2 (2)

First integrate (1) with respect to x

ϕ(x, y) =

∫
∂ϕ

∂x
dx

=

∫ (
−8

3
xy − 4

3
xy3

)
dx

= −4

3
x2y − 2

3
x2y3 + A(y)

(3)

Noting again that the constant of integration if a function of y with respect to x. To find
A(y) we can differentiate (3) with respect to y and compare with (2).

−4

3
x2 − 2x2y2 +

dA

dy
= −4

3
x2 − 2x2y2

dA

dy
= 0

(4)

Noting the cancellations, we can see that A(y) = C. Thus, the potential function is then

ϕ(x, y) = −4

3
x2y − 2

3
x2y3 + C .

4 Line Integrals

4.1 Line Integral of a Function

Given a function f(x, y, z) and a curve, C : r⃗(t), a ≤ t ≤ b, the line integral of f is∫
C

f ds =

∫ b

a

f(r⃗(t))

∣∣∣∣dr⃗dt
∣∣∣∣ dt.

To calculate the line integral,

1. Write f in terms of t

2. Take the magnitude of dr⃗
dt

3. Multiply f(t) and

∣∣∣∣dr⃗dt ∣∣∣∣
4. Integrate

4.1.1 Example

Calculate the line integral ∫
C

f ds.

Where

f(x, y, z) =
x+ z

y + z
.
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and C is given by

x(t) = t y(t) = t z(t) = t3/2

For 1 ≤ t ≤ 3.

Solution: First we note that this is a line integral of a function. Thus, we can follow
the steps highlighted above.
Substitute in terms.

r⃗(t) = (t, t, t3/2) for 1 ≤ t ≤ 3.

Next we can find ds through the relation noted in the remark above.

ds =

∣∣∣∣dr⃗dt
∣∣∣∣ dt = √

12 + 12 + (3
2
t1/2)2 dt

ds =
√

2 + 9
4
t dt

Now we can integrate. ∫
C

f ds =

∫ b

a

f(r⃗(t))

∣∣∣∣dr⃗dt
∣∣∣∣ dt∫

C

x+ z

y + z
ds =

∫ 3

1

t+ t3/2

t+ t3/2

√
2 + 9

4
t dt

=

∫ 3

1

(
2 +

9

4
t

)1/2

dt

Using u substitution.

Let u = 2 +
9

4
t

du =
9

4
dt

⇒ dt =
4

9
du

When t = 1, u = 2 +
9

4

When t = 3, u = 2 +
9

4
· 3

Thus our integral becomes

4

9

∫ 2+ 9
4
·3

2+ 9
4

u1/2 du

=
2

3
· 4
9

(
u3/2

)∣∣∣∣2+ 9
4
·3

2+ 9
4

=
8

27
[(2 +

9

4
· 3)3/2 − (2 +

9

4
)3/2]

6
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4.2 Line integral of a Vector Field

Given a vector field F⃗ (x, y, z), a curve C : r⃗(t), a ≤ t ≤ b, and an orientation (eg: start

and end points, leftward or rightward, upward or downward), the line integral of F⃗ is∫
C

F⃗ · dr⃗ = ±
∫ b

a

f(r⃗(t)) · dr⃗
dt

dt.

Note: Choose + if the given orientation corresponds to increasing t.
To calculate the line integral of a vector field,

1. Write f in terms of t

2. Find dr⃗
dt

3. Match the sign to the specified orientation

4. Find the dot product of f and dr⃗
dt

5. Integrate

Note: The notation C is used because the line integrals do not change under curve repa-
rameterization. The C is intended to represent any parameterization (and orientation).
If the orientation is reversed, the vector field line integral is negated.
Remark: Calculations are often organized as

ds =

∣∣∣∣dr⃗dt
∣∣∣∣ dt dr⃗ =

dr⃗

dt
dt

4.2.1 Example

Calculate ∫
C

F⃗ · dr⃗.

Where
F⃗ (x, y, z) = (y + z, x+ z, x+ y).

and C is given by

x(t) = t y(t) = t2 z(t) = t3

For 0 ≤ t ≤ 1 when C is oriented downwards.

Solution: We can identify this as a line integral of a vector field problem. Thus, we can
follow the steps listed above.

r⃗(t) = (t, t2, t3).

Taking the derivative gives us.
dr⃗

dt
= (1, 2t, 3t2).

7
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Note that z(t) = t3 increases when t increases from 0 to 1 (upwards). We have opposite
direction so we choose a negative sign for the integral.∫

C

F⃗ · dr⃗ = −
∫ 1

0

f(r⃗(t)) · dr⃗
dt

dt

f(r⃗(t)) · dr⃗
dt

= (t2 + t3, t+ t3, t+ t2) · (1, 2t, 3t2)

= 3t2 + 4t3 + 5t4

Then ∫
C

F⃗ · dr⃗ = −
∫ 1

0

(3t2 + 4t3 + 5t4) dt = −3

4.3 Parameterization Invariance

A reparameterization is a formula that substitutes the variable t for another variable s
where dt/ds is never 0.
Remark: For any one line integral there are many different possible reparameterizations.

4.3.1 Example

Given the function f(x, y, z) = (2x+ y)/z and

x =
1

2
t2 y =

1

2
t2 z = t

√
3

2
≤t ≤ 2

Find the line integral without reparameterization, and then find it with reparameteriza-
tion and compare the results.

8
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First, without reparamterization∫
C

fds =

∫ 2

√
3
2

f(r⃗(t))

∣∣∣∣dr⃗dt
∣∣∣∣dt

r⃗ = (
1

2
t2,

1

2
t2, t)

dr⃗

dt
= (t, t, 1)∣∣∣∣dr⃗dt

∣∣∣∣ = √
t2 + t2 + 12 =

√
2t2 + 1

f(r⃗(t)) =
(t2 + 1

2
t2)

t

f(r⃗(t))

∣∣∣∣dr⃗dt
∣∣∣∣ = (t2 + 1

2
t2)

t

√
2t2 + 1 =

3

2
t
√
2t2 + 1

⇒
∫
C

fds =
3

2

∫ 2

√
3
2

t
√
2t2 + 1 dt

u = 2t2 + 1, du = 4t dt, t dt = du/4

t =
√

3/2, u = 4, t = 2, u = 9

⇒
∫
C

fds =
3

8

∫ 9

4

u1/2du

=
1

4
[u3/2]

∣∣∣∣9
4

=
19

4

Now we can reparameterize our equations so that t = 2s.

x = 2s2 y = 2s2 z = 2s

√
3

8
≤ s ≤ 1

9
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Finding the line integral with the reparameterized data∫
C

fds =

∫ 1

√
3
8

f(r⃗(t))

∣∣∣∣dr⃗dt
∣∣∣∣dt

r⃗ = (2s2, 2s2, 2s)

dt⃗

ds
= (4s, 4s, 2)∣∣∣∣dr⃗ds

∣∣∣∣ = √
(4s)2 + (4s)2 + 22 =

√
32s2 + 4 = 2

√
8s2 + 1

f(r⃗(s)) =
6s2

2s∫
C

fds =

∫ 1

√
3
8

6s2

2s
2
√
8s2 + 1 ds

= 6

∫ 1

√
3/8

s
√
8s2 + 1 ds

u = 8s2 + 1, du = 16s ds, s ds = du/16

s =
√

3/8, u = 4, s = 1, u = 9

=
6

16

∫ 9

4

u3/2du

=
1

4
[u3/2]

∣∣∣∣9
4

=
19

4

As we can see, the reparameterization has not had an effect on the final result of the line
integral.

4.3.2 Example

Calculate the line integral of F⃗ = −yî+ xĵ for C that is clockwise around the unit circle
centered at the origin.

One of the ways in which we may choose to parameterize this is as follows

x = cos t y = sin t t ∈ [0, 2π]

As t increases, this parameterization moves counter-clockwise around the unit circle, so

10
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we use a negative sign on the integral.∫
C

F⃗ · dr⃗ = −
∫ 2π

0

f(r⃗(t)) · dr⃗
dt

dt

r⃗ = (cos t, sin t)

dr⃗

dt
= (− sin t, cos t)

f(r⃗(t)) = (− sin t, cos t)

= −
∫ 2π

0

(− sin t, cos t) · (− sin t, cos t) dt

= −
∫ 2π

0

sin2(t) + cos2(t) dt

= −
∫ 2π

0

1 dt

= −2π

If we try a different parameterization such as

x = sin t y = cos t t ∈ [0, 2π]

We will expect the same result from the line integral. Additionally, as t increases in this
parameterization, it traces a unit circle that is clockwise. As such, the sign on the integral
is positive.
Skipping some intermediary steps gives us.∫

C

F⃗ · dr⃗ =

∫ 2π

0

f(r⃗(t)) · dr⃗
dt

dt

=

∫ 2π

0

− cos2(t)− sin2(t) dt

=

∫ 2π

0

−1 dt

= −2π

4.4 Path Dependence

If two curves are not reparameterizations of one another, the line integrals along them
may be different even if the start and end points are the same.
An example being the two curves:

y = x y = x2

Both curves start at (0,0) and both end at (1,1) but have different line integrals.
Additionally, line integrals may be calculated by substituting differentials.

11



Ian Whiting MATH224 Lecture Notes

4.4.1 Example

Given the data:

C1 : y = x2, starting at (0,0) and ending at (1,1)

C2 : y = x, starting at (0,0) and ending at (1,1)

Calculate ∫
y dx+ 2x dy.

by substituting the differentials.

y = x2, dy = 2x dx,

∫
C1

y dx+ 2x dy =

∫ 1

0

x2 dx+ (2x)(2x) dx =

∫ 1

0

5x2 dx =
5

3

y = x, dy = dx,

∫
C1

y dx+ 2x dy =

∫ 1

0

x dx+ 2x dx =

∫ 1

0

3x dx =
3

2

4.5 Closed Curves

If a curve is closed (ie: the start and end are at the same point), then the line integral
may or may not be 0.

4.5.1 Example

Calculate ∮
C

−y dx+ x2 dy.

Where C is counter-clockwise around the boundary of the square [0, 1]2.

To calculate the closed integral, we can sum the line integrals of the four edges.

x = 1, 0 ≤ y ≤ 1, dx = 0 dy∮
C1

−y dx+ x2 dy = +

∫ 1

0

(−y)(0 dy) + (12)(dy) =

∫ 1

0

1 dy = 1

y = 1, 0 ≤ x ≤ 1, dy = 0 dx∮
C2

−y dx+ x2 dy = −
∫ 1

0

(−1)(0 dx) + (x2)(dx) = −
∫ 1

0

−1 dx = 1

x = 0, 0 ≤ y ≤ 1, dx = 0 dy∮
C3

−y dx+ x2 dy = −
∫ 1

0

(−y)(0 dy) + (0)(dy) = −
∫ 1

0

0 dy = 0

y = 0, 0 ≤ x ≤ 1, dy = 0 dx∮
C4

−y dx+ x2 dy = +

∫ 1

0

(0)(dx) + (x2)(dx) =

∫ 1

0

0 dx = 0

12
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Note that the signs of the integrals are dependent on x or y increasing or decreasing as
we travel counter-clockwise along the path. Thus, our final integral is∮

−y dx+ x2 dy = 1 + 1 + 0 + 0 = 2 .

4.6 Line Integral as a Potential Difference

If a vector field is conservative, and the potential (function) is known, then the line
integral is the potential difference.
Given a curve, r⃗(t), t ∈ [a, b] and an orientation, if the given orientation is in the same
direction as increasing t, then∫

F⃗ · dr⃗ = +

∫ b

a

F⃗ (r⃗(t)) · dr⃗
dt

=

∫ b

a

∇f(r⃗(t)) · dr⃗
dt

=

∫ b

a

d

dt
f(r⃗(t)) dt

= f(r⃗(b))− f(r⃗(a))

= f(end)− f(begin)

If the given orientation is in the opposite direction then the result is the same because
the choice is ”−”, the integral gives f(r⃗(a))− f(r⃗(b)), and ”begin” is r⃗(b) while ”end” is
r⃗(a).
If a vector field is conservative, then the alternate formula shows that the line integral
depends only on the endpoints and not the path. It also shows that the line integral
around any closed curve is 0.
Conversely, given either of those, for all paths or closed curves the vector field is then
conservative. The potential different between any two points may be obtained by the line
integral of any curve joining them.

4.6.1 Example

Calculate the line integral of F⃗ = (3x2y+z, x3+2y, x) along x = et sin t2, y = 1
1+t4

, z = t3

for −1 ≤ t ≤ −1/2 in the orientation of increasing t.

First we need to find the potential of F⃗ .

∂ϕ

∂x
= 3x2y + z (1)

∂ϕ

∂y
= x3 + 2y (2)

∂ϕ

∂z
= x (3)

Integrate (1) with respect to x.∫
3x2y + z dx = x3y + zx+ A(y, z) (4)

13
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Differentiate (4) with respect to y and compare with (2).

x3 +
∂A

∂y
= x3 + 2y ⇒ ∂A

∂y
= 2y (5)

Integrate (4) with respect to y.

A(y, z) =

∫
2y dy = y2 +B(z) ⇒ x3y + zx+ y2 +B(z) (6)

Differentiate (6) with respect to z and compare with (3).

x+
dB

dz
= x ⇒ dB

dz
= C (7)

Thus, our potential function is

ϕ(x, y, z) = x3y + zx+ y2.

Now, we can evaluate the curve at the end points provided.

begin = (x, y, z)

∣∣∣∣
t=−1

=

(
e−1 sin(1),

1

2
,−1

)
= (0.3096, 0.5000,−1.000)

end = (x, y, z)

∣∣∣∣
t=−1/2

=

(
e−1/2 sin(1/4),

16

17
,
−1

8

)
= (0.1501, 0.9412,−0.1250)

The alternative formula for the line integral in a conservative vector field tells us that we
find the integral by evaluating the potential function at the beginning and end.∫

F⃗ · dr⃗ = ϕ(end)− ϕ(begin)

= ϕ(0.1501, 0.9412,−0.1250)− ϕ(0.3096, 0.5000,−1.000)

= 0.8702− (−0.0447) = 0.9150

Thus, the final result of our line integral is

0.9150 .

5 Surface Integrals

An orientation of a surface is a choice of direction through it (eg: inwards or outwards),
one of two continuous unit normals. For a surface r⃗(u, v)

n̂ = ± r⃗u × r⃗v
|r⃗u × r⃗v|

r⃗u =
∂r⃗

∂u
r⃗v =

∂r⃗

∂v

Where ± means that the given orientation corresponds to either positive or negative of
the cross product.

14
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5.1 Surface Integral of a Function

Given a function f(x, y, z) and a surface S : r⃗(u, v), (u, x) ∈ A, the surface integral is f
is ∫∫

S

f dS =

∫∫
A

f(x(u, v), y(u, v), z(u, v))

∣∣∣∣∂r⃗∂u × ∂r⃗

∂v

∣∣∣∣(du dv).

The steps to calculate the surface integral of a function are as follows:

1. Substitute x, y, z from r⃗(u, v) into f

2. Take the partial derivatives of r⃗ with respect to u and v

3. Find the cross product of the partial derivatives

4. Find the magnitude of the cross product

5. Multiply the magnitude of the cross product with f

6. Integrate over the region u and v are bound by.

5.1.1 Example

Calculate the surface integral of f = x+ y+ z over the part of the plane x+2y+4z = 8
in the first octant.

The goal for these types of questions, and most questions we’ve seen so far, is to find all
the necessary components to solve the integrals that pertain to that question.∫∫

S

f dS =

∫∫
A

f(x(u, v), y(u, v), z(u, v))

∣∣∣∣∂r⃗∂u × ∂r⃗

∂v

∣∣∣∣(du dv).

Rearrange to find z as a function of x, y.

x+ 2y + 4z = 8 ⇒ z =
8− x− 2y

4
.

Starting by substituting x, y, z into r⃗(u, v)

r⃗(u, v) = (u, v,
8− u− 2v

4
).

Take partial derivatives of r⃗ with respect to u and v.

∂r⃗

∂u
= (1, 0,−1/4)

∂r⃗

∂v
= (0, 1,−1/2)

Find the magnitude of the cross product.∣∣∣∣∣∣
î ĵ k̂
1 0 −1/4
0 1 −1/2

∣∣∣∣∣∣ =
(
1

4
,
1

2
, 1

)

dS =
√

(1/4)2 + (1/2)2(1)2(du dv) =

√
21

4
(du dv)

15
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Now that we have f(r⃗(u, v)) and the magnitude of the cross product, we cant determine
the bounds of integration.
Because we are only interested in the first quadrant, we know that.

x ≥ 0, y ≥ 0, z ≥ 0.

Using the expression for z.

z =
8− x− 2y

4
≥ 0

⇒ x+ 2y ≤ 8.

Thus, the projection of the surface onto the xy-plane is the region bounded by

x = 0, y = 0, x+ 2y = 8.

This region is a triangle with vertices

(0, 0), (8, 0), (0, 4).

Solving the boundary line for y,

x+ 2y = 8 ⇒ y = 4− x

2
.

Therefore, the bounds of integration are

0 ≤ x ≤ 8, 0 ≤ y ≤ 4− x

2
.

The surface integral may now be written as∫ 8

0

∫ 4−x
2

0

f

(
u, v,

8− u− 2v

4

) √
21

4
dv du.

5.1.2 Example

Find the surface integral of f(x, y, z) = y for

S : r⃗(u, v) = (u, v3, u+ v), 0 ≤ u ≤ 3, 0 ≤ v ≤ 2.

First we can substitute r⃗(u, v) into f .

f = v3.

Next we can find the partial derivatives and the magnitude of the cross product.

∂r⃗

∂u
= (1, 0, 1)

∂r⃗

∂v
= (0, 3v2, 1)

∂r⃗

∂u
× ∂r⃗

∂v
=

∣∣∣∣∣∣
î ĵ k̂
1 0 1
0 3v2 1

∣∣∣∣∣∣ = (−3v2,−1, 3v2)

∣∣∣∣∂r⃗∂u × ∂r⃗

∂v

∣∣∣∣ = √
(−3v2)2 + (−1)2 + (3v2)2 =

√
18v4 + 1

16
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Finally, we can multiply f(v) and the magnitude of the cross product and take the
integral. ∫∫

y dS =

∫∫
[0,3]×[0,2]

v3
√
18v4 + 1(du dv)

=

∫ 3

0

du×
∫ 2

0

v3
√
18v4 + 1dv

u = 18v4 + 1, du = 72v3dv, v3dv = du/72

v = 0, u = 1, v = 2, u = 289

=

∫ 3

0

du× 1

72

∫ 289

0

u1/2du

= 3× 1

108
[u3/2]

∣∣∣∣289
0

= 136.47

5.2 Surface Integral of a Vector Field

Given a vector field F⃗ (x, y, z), a surface S : r⃗(u, v), (u, v) ∈ A, and an orientation

n̂(x, y, z), the surface integral, or flux, of F⃗ is∫∫
S

F⃗ · dS⃗ =

∫∫
S

F⃗ · (n̂) dS = ±
∫∫

A

F⃗ (r⃗(u, v)) ·
(
∂r⃗

∂u
× ∂r⃗

∂v

)
(du dv).

Where we choose the sign of the integral depending on the cross product. (Choose + if
the given orientation corresponds to the cross product).
The steps to calculate the surface integral of a vector field is as follows:

1. Substitute x, y, z from r⃗(u, v) into F⃗

2. Take the partial derivatives of r⃗ with respect to u and v

3. Find the cross product of the partial derivatives

4. Take the dot product of F⃗ (u, v) and the partial derivatives

5. Determine sign of the integral from the sign given, and the sign of the cross product.

6. Integrate over the region u and v are bound by.

5.2.1 Example

Find the downward flux F⃗ (x, y, z) = (y, z, 0) through the surface

r⃗(u, v) = (u3 − v, u+ v, v2), u2 + v2 ≤ 1.

First we can substitute r⃗ into f .

f(u, v) = (u+ v, v2, 0).

17
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Next we can find the cross product of the partial derivatives.

∂r⃗

∂u
= (3u2, 1, 0)

∂r⃗

∂v
= (−1, 1, 2v)

∂r⃗

∂u
× ∂r⃗

∂v
=

∣∣∣∣∣∣
î ĵ k̂

3u2 1 0
−1 1 2v

∣∣∣∣∣∣ = (2v,−6u2v, 3u2 + 1)

Note that this is upwards as the z-component is 3u2 + 1 > 0. We were asked to find the
downwards flux so we choose the − sign for the integral.∫∫

S

F⃗ · dS⃗ = −
∫∫

u2+v2≤1

(u+ v, v2, 0) · (2v,−6u2v, 3u2 + 1)(du dv)

= −
∫∫

u2+v2≤1

2uv + 2v2 − 6u2v3(du dv)

To solve this integral we can convert it to polar coordinates.

0 ≤ r ≤ 1

0 ≤ θ ≤ 2π

u = r cos θ, v = r sin θ, du dv = r dr dθ

Thus, our integral becomes

−
∫ 2π

0

∫ 1

0

(2r2 cos θ sin θ + 2r2 sin2 θ − 6r5 cos2 θ sin3 θ) r dr dθ

−
∫ 2π

0

∫ 1

0

2r3 cos θ sin θ + 2r3 sin2 θ − 6r6 cos2 θ sin3 θ dr dθ

When integrating from 0 ≤ θ ≤ 2π any term with an odd power results in being 0. Thus,
our integral becomes

−
∫ 2π

0

sin2 θ dθ × 2

∫ 1

0

r3 dr

−π × 1

2
−π

2

5.2.2 Example

Find the flux of F⃗ (x, y, z) = (x, y, 0) upwards through the part of the surface

z = 2− x2 − 2y2.

that lies above the xy-plane.

18
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Writing our surface in terms of u and v.

r⃗(u, v) = (u, v, 2− u2 − 2v2).

Find the cross product of partial derivatives.

∂r⃗

∂u
= (1, 0,−2u)

∂r⃗

∂v
= (0, 1,−4v)∣∣∣∣∣∣

î ĵ k̂
1 0 −2u
0 1 −4v

∣∣∣∣∣∣ = (2u, 4v, 1)

Note that the z component is 1 > 0, meaning that the surface is directed upwards. This
is the same direction as the flux given, thus we choose the + sign for our integral.
Finding the dot product of F⃗ and the cross product of the partial derivatives. Note that
I’ve written F⃗ in terms of u, v.

(u, v, 0) · (2u, 4v, 1) = (2u2 + 4v2).

Now we have the following integral.∫∫
S

= F⃗ · dS⃗ =

∫∫
S

(2u2 + 4v2) du dv.

To determine our bounds, we project the surface, S, onto the uv-plane.
The surface z = 2 − u2 − 2v2 is an elliptic disk. Setting z = 0 gives us the projection
onto the uv-plane.

0 = 2− u2 − 2v2 ⇒ u2 + 2v2 = 2.

Writing this in polar coordinates makes the integral easier. We could do a typical polar
substitution where x = r cos θ, etc. However this results in bounds that are a bit tricky
to work with.
If instead we scale the axis so that the ellipse becomes a circle with a constant radius,
then the integral becomes very simple.
We set the following:

u =
√
2x, v = y ⇒ du dv =

√
2 dx dy.

This our ellipse becomes a unit disk.

u2 + 2v2 = 2 ⇒ 2x2 + 2y2 = 2 ⇒ x2 + y2 = 1.

Our integral then becomes.∫∫
S

= F⃗ · dS⃗ =

∫∫
S

(2u2 + 4v2) du dv

=

∫∫
S

(2(
√
2x)2 + 4(y)2)

√
2 dx dy

=

∫∫
S

(4x2 + 4y2)
√
2 dx dy

= 4
√
2

∫∫
S

(x2 + y2) dx dy
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Where
x = r cos θ, y = r sin θ, dx dy = r dr dθ.

From 0 ≤ r ≤ 1, and 0 ≤ θ ≤ 2π. Thus,∫∫
S

F⃗ · dS⃗ = 4
√
2

∫ 2π

0

∫ 1

0

r3(cos θ + sin θ) dr dθ.

Nothing the identity cos θ + sin θ = 1, the integral is evaluated as.

2
√
2π .

5.3 Parameterization Invariance

As with line integrals, surface integrals may be described geometrically and we have to
parameterize it.

5.3.1 Example

Calculate the surface integral of f = x+ y+ x over the part of the plane x+2y+4z = 8
in the first octant.

Given that this is the surface integral of a function, we can write z as a function of x, y.

x+ 2y + 4z = 8 ⇒ z =
8− 2y − x

4
.

Substituting x, y, z into r⃗(u, v).

r⃗(u, v) =

(
u, v,

8− 2v − u

4

)
.

Finding the magnitude of the cross product of the partial derivatives gives us.

∂r⃗

∂u
= (1, 0,−1/4)

∂r⃗

∂v
= (0, 1,−1/2)∣∣∣∣∣∣

î ĵ k̂
1 0 −1/4
0 1 −1/2

∣∣∣∣∣∣ =
(
1

4
,
1

2
, 1

)

dS =

√
1

16
+

1

4
+ 1 (du, dv) =

√
21

4
(du dv)

Now to find the bounds we are integrating over, we need to project the surface onto the
x, y plane.
First we need to sketch the surface so that we can better visualize what we are doing.
Setting x, y, z = 0 in turn we find the intercepts as:

x = 8 y = 4 z = 2
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4

8

2
4

2

x

y

z
If we choose to integrate with re-
spect to y first, we can picture ver-
tical slices along the triangle from
x = 0 to x = 8.
For any fixed x, the corresponding
y starts at y = 0 and ends at the
line x+ 2y = 8. Solving for y gives
us.

0 ≤ y ≤ 8− x

2
.

The total range that contain these vertical slices is from 0 ≤ x ≤ 8.
And thus, these are our bounds of integration.∫∫

(x+ y + z) dS =

∫ 8

0

∫ (8−x)/2

0

(
x+ y +

8− x− 2y

4

) √
21

4
dy dx

=

√
21

4

∫ 8

0

∫ (8−x)/2

0

(
x+ y +

8− x− 2y

4

)
dy dx

=

√
21

4

∫ 8

0

∫ (8−x)/2

0

(
x+ y + 2− x

4
− y

2

)
dy dx

=

√
21

4

∫ 8

0

∫ (8−x)/2

0

(
3x

4
+

y

2
+ 2

)
dy dx

=

√
21

4

∫ 8

0

(
3xy

4
+

y2

4
+ 2y

)∣∣∣∣(8−x)/2

0

dx

=

√
21

4

∫ 8

0

3x
(
8−x
2

)
4

+

(
8−x
2

)2
4

+ 8− x dx

=

√
21

4

∫ 8

0

x+ 12− 5

16
x2 dx

=
56
√
21

3

6 Gradient, Curl, and Divergence

grad: = ∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
, div: = ∇· = ∂

∂x
+

∂

∂y
+

∂

∂z
,

curl: = ∇× =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

− − −

∣∣∣∣∣∣ , F⃗ · ∇ = P
∂

∂x
+Q

∂

∂y
+R

∂

∂z
,

laplacian: = ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, solenodial: = ∇· = 0

irrotational: ∇× = 0, harmonic: ∇2 = 0
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6.1 Differential Operators

A differential operator is an operator involving derivatives of a function or vector field
and resulting in a function or vector field.
For example, the gradient operates on a function giving the result

∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z
,

)
.

The differential operators we consider have application specific interpretations.
For example, the gradient of a function dotted with a vector is the rate of change of the
function experienced by an object with a velocity.

d

dt
f(r⃗(t)) =

∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t
+
∂f

∂z

∂z

∂t
=

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z
,

)
·
(
∂x

∂t
,
∂y

∂t
,
∂z

∂t
,

)
= ∇f(r⃗(t)) · dr⃗

dt
.

Note that the symbol, ∇ (called nabla, or del), is the symbol for the operator itself, not
the operation. We can think of the difference between operator and operation as such.
The operator has the potential to operate. The operation uses the operator to realize
that potential.
Consider the following:

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
.

The operator operates on the function f to give us:

∇f = î
∂f

∂x
+ ĵ

∂f

∂y
+ k̂

∂f

∂z
.

An operator that takes a function and results in a function may be extended component
wise. For example if F⃗ = (P,Q,R) then,

∇2F⃗ = (∇2P,∇2Q,∇2R).

Similarly, given another vector field G⃗.

G⃗ · ∇F⃗ = (G⃗ · ∇P, G⃗ · ∇Q, G⃗ · ∇R).

6.1.1 Example

Calculate the divergence and curl of

F⃗ = (x2 + y2, 2y sin(yz), y2z2).

Applying the formulas at the start of this section gives us,

div: = ∇ · F⃗

=
∂

∂x
(x2 + y2) +

∂

∂y
(2y sin(yz)) +

∂

∂z
(y2z2)

Applying the product rule: (fg)′ = fg′ + f ′g

= 2x+ 2yz cos(yz) + 2 sin(yz) + 2y2z
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For curl,

curl: = ∇× =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

− − −

∣∣∣∣∣∣
⇒ ∇× F⃗ =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

x2 + y2 2y sin(yz) y2z2

∣∣∣∣∣∣
= . . .

= (2yz − 2y2 cos(yz), 0,−2y)
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